Widget
open class Widget : GLibObject.InitiallyUnowned, WidgetProtocol
GtkWidget is the base class all widgets in GTK+ derive from. It manages the widget lifecycle, states and style.
Height-for-width Geometry Management #
GTK+ uses a height-for-width (and width-for-height) geometry management system. Height-for-width means that a widget can change how much vertical space it needs, depending on the amount of horizontal space that it is given (and similar for width-for-height). The most common example is a label that reflows to fill up the available width, wraps to fewer lines, and therefore needs less height.
Height-for-width geometry management is implemented in GTK+ by way of five virtual methods:
GtkWidgetClass.get_request_mode
()
GtkWidgetClass.get_preferred_width
()
GtkWidgetClass.get_preferred_height
()
GtkWidgetClass.get_preferred_height_for_width
()
GtkWidgetClass.get_preferred_width_for_height
()
GtkWidgetClass.get_preferred_height_and_baseline_for_width
()
There are some important things to keep in mind when implementing height-for-width and when using it in container implementations.
The geometry management system will query a widget hierarchy in
only one orientation at a time. When widgets are initially queried
for their minimum sizes it is generally done in two initial passes
in the GtkSizeRequestMode
chosen by the toplevel.
For example, when queried in the normal
GTK_SIZE_REQUEST_HEIGHT_FOR_WIDTH
mode:
First, the default minimum and natural width for each widget
in the interface will be computed using gtk_widget_get_preferred_width()
.
Because the preferred widths for each container depend on the preferred
widths of their children, this information propagates up the hierarchy,
and finally a minimum and natural width is determined for the entire
toplevel. Next, the toplevel will use the minimum width to query for the
minimum height contextual to that width using
gtk_widget_get_preferred_height_for_width()
, which will also be a highly
recursive operation. The minimum height for the minimum width is normally
used to set the minimum size constraint on the toplevel
(unless gtk_window_set_geometry_hints()
is explicitly used instead).
After the toplevel window has initially requested its size in both
dimensions it can go on to allocate itself a reasonable size (or a size
previously specified with gtk_window_set_default_size()
). During the
recursive allocation process it’s important to note that request cycles
will be recursively executed while container widgets allocate their children.
Each container widget, once allocated a size, will go on to first share the
space in one orientation among its children and then request each child’s
height for its target allocated width or its width for allocated height,
depending. In this way a GtkWidget
will typically be requested its size
a number of times before actually being allocated a size. The size a
widget is finally allocated can of course differ from the size it has
requested. For this reason, GtkWidget
caches a small number of results
to avoid re-querying for the same sizes in one allocation cycle.
See GtkContainer’s geometry management section to learn more about how height-for-width allocations are performed by container widgets.
If a widget does move content around to intelligently use up the
allocated size then it must support the request in both
GtkSizeRequestModes
even if the widget in question only
trades sizes in a single orientation.
For instance, a GtkLabel
that does height-for-width word wrapping
will not expect to have GtkWidgetClass.get_preferred_height
()
called
because that call is specific to a width-for-height request. In this
case the label must return the height required for its own minimum
possible width. By following this rule any widget that handles
height-for-width or width-for-height requests will always be allocated
at least enough space to fit its own content.
Here are some examples of how a GTK_SIZE_REQUEST_HEIGHT_FOR_WIDTH
widget
generally deals with width-for-height requests, for GtkWidgetClass.get_preferred_height
()
it will do:
(C Language Example):
static void
foo_widget_get_preferred_height (GtkWidget *widget,
gint *min_height,
gint *nat_height)
{
if (i_am_in_height_for_width_mode)
{
gint min_width, nat_width;
GTK_WIDGET_GET_CLASS (widget)->get_preferred_width (widget,
&min_width,
&nat_width);
GTK_WIDGET_GET_CLASS (widget)->get_preferred_height_for_width
(widget,
min_width,
min_height,
nat_height);
}
else
{
... some widgets do both. For instance, if a GtkLabel is
rotated to 90 degrees it will return the minimum and
natural height for the rotated label here.
}
}
And in GtkWidgetClass.get_preferred_width_for_height
()
it will simply return
the minimum and natural width:
(C Language Example):
static void
foo_widget_get_preferred_width_for_height (GtkWidget *widget,
gint for_height,
gint *min_width,
gint *nat_width)
{
if (i_am_in_height_for_width_mode)
{
GTK_WIDGET_GET_CLASS (widget)->get_preferred_width (widget,
min_width,
nat_width);
}
else
{
... again if a widget is sometimes operating in
width-for-height mode (like a rotated GtkLabel) it can go
ahead and do its real width for height calculation here.
}
}
Often a widget needs to get its own request during size request or allocation. For example, when computing height it may need to also compute width. Or when deciding how to use an allocation, the widget may need to know its natural size. In these cases, the widget should be careful to call its virtual methods directly, like this:
(C Language Example):
GTK_WIDGET_GET_CLASS(widget)->get_preferred_width (widget,
&min,
&natural);
It will not work to use the wrapper functions, such as
gtk_widget_get_preferred_width()
inside your own size request
implementation. These return a request adjusted by GtkSizeGroup
and by the GtkWidgetClass.adjust_size_request
()
virtual method. If a
widget used the wrappers inside its virtual method implementations,
then the adjustments (such as widget margins) would be applied
twice. GTK+ therefore does not allow this and will warn if you try
to do it.
Of course if you are getting the size request for
another widget, such as a child of a
container, you must use the wrapper APIs.
Otherwise, you would not properly consider widget margins,
GtkSizeGroup
, and so forth.
Since 3.10 GTK+ also supports baseline vertical alignment of widgets. This
means that widgets are positioned such that the typographical baseline of
widgets in the same row are aligned. This happens if a widget supports baselines,
has a vertical alignment of GTK_ALIGN_BASELINE
, and is inside a container
that supports baselines and has a natural “row” that it aligns to the baseline,
or a baseline assigned to it by the grandparent.
Baseline alignment support for a widget is done by the GtkWidgetClass.get_preferred_height_and_baseline_for_width
()
virtual function. It allows you to report a baseline in combination with the
minimum and natural height. If there is no baseline you can return -1 to indicate
this. The default implementation of this virtual function calls into the
GtkWidgetClass.get_preferred_height
()
and GtkWidgetClass.get_preferred_height_for_width
()
,
so if baselines are not supported it doesn’t need to be implemented.
If a widget ends up baseline aligned it will be allocated all the space in the parent
as if it was GTK_ALIGN_FILL
, but the selected baseline can be found via gtk_widget_get_allocated_baseline()
.
If this has a value other than -1 you need to align the widget such that the baseline
appears at the position.
Style Properties
GtkWidget
introduces “style
properties” - these are basically object properties that are stored
not on the object, but in the style object associated to the widget. Style
properties are set in resource files.
This mechanism is used for configuring such things as the location of the
scrollbar arrows through the theme, giving theme authors more control over the
look of applications without the need to write a theme engine in C.
Use gtk_widget_class_install_style_property()
to install style properties for
a widget class, gtk_widget_class_find_style_property()
or
gtk_widget_class_list_style_properties()
to get information about existing
style properties and gtk_widget_style_get_property()
, gtk_widget_style_get()
or
gtk_widget_style_get_valist()
to obtain the value of a style property.
GtkWidget as GtkBuildable
The GtkWidget implementation of the GtkBuildable interface supports a custom <accelerator> element, which has attributes named ”key”, ”modifiers” and ”signal” and allows to specify accelerators.
An example of a UI definition fragment specifying an accelerator:
<object class="GtkButton">
<accelerator key="q" modifiers="GDK_CONTROL_MASK" signal="clicked"/>
</object>
In addition to accelerators, GtkWidget also support a custom <accessible>
element, which supports actions and relations. Properties on the accessible
implementation of an object can be set by accessing the internal child
“accessible” of a GtkWidget
.
An example of a UI definition fragment specifying an accessible:
<object class="GtkLabel" id="label1"/>
<property name="label">I am a Label for a Button</property>
</object>
<object class="GtkButton" id="button1">
<accessibility>
<action action_name="click" translatable="yes">Click the button.</action>
<relation target="label1" type="labelled-by"/>
</accessibility>
<child internal-child="accessible">
<object class="AtkObject" id="a11y-button1">
<property name="accessible-name">Clickable Button</property>
</object>
</child>
</object>
Finally, GtkWidget allows style information such as style classes to be associated with widgets, using the custom <style> element:
<object class="GtkButton" id="button1">
<style>
<class name="my-special-button-class"/>
<class name="dark-button"/>
</style>
</object>
Building composite widgets from template XML ##
GtkWidget exposes some facilities to automate the procedure
of creating composite widgets using GtkBuilder
interface description
language.
To create composite widgets with GtkBuilder
XML, one must associate
the interface description with the widget class at class initialization
time using gtk_widget_class_set_template()
.
The interface description semantics expected in composite template descriptions
is slightly different from regular GtkBuilder
XML.
Unlike regular interface descriptions, gtk_widget_class_set_template()
will
expect a <template> tag as a direct child of the toplevel <interface>
tag. The <template> tag must specify the “class” attribute which must be
the type name of the widget. Optionally, the “parent” attribute may be
specified to specify the direct parent type of the widget type, this is
ignored by the GtkBuilder but required for Glade to introspect what kind
of properties and internal children exist for a given type when the actual
type does not exist.
The XML which is contained inside the <template> tag behaves as if it were
added to the <object> tag defining widget
itself. You may set properties
on widget
by inserting <property> tags into the <template> tag, and also
add <child> tags to add children and extend widget
in the normal way you
would with <object> tags.
Additionally, <object> tags can also be added before and after the initial <template> tag in the normal way, allowing one to define auxiliary objects which might be referenced by other widgets declared as children of the <template> tag.
An example of a GtkBuilder Template Definition:
<interface>
<template class="FooWidget" parent="GtkBox">
<property name="orientation">GTK_ORIENTATION_HORIZONTAL</property>
<property name="spacing">4</property>
<child>
<object class="GtkButton" id="hello_button">
<property name="label">Hello World</property>
<signal name="clicked" handler="hello_button_clicked" object="FooWidget" swapped="yes"/>
</object>
</child>
<child>
<object class="GtkButton" id="goodbye_button">
<property name="label">Goodbye World</property>
</object>
</child>
</template>
</interface>
Typically, you’ll place the template fragment into a file that is
bundled with your project, using GResource
. In order to load the
template, you need to call gtk_widget_class_set_template_from_resource()
from the class initialization of your GtkWidget
type:
(C Language Example):
static void
foo_widget_class_init (FooWidgetClass *klass)
{
// ...
gtk_widget_class_set_template_from_resource (GTK_WIDGET_CLASS (klass),
"/com/example/ui/foowidget.ui");
}
You will also need to call gtk_widget_init_template()
from the instance
initialization function:
(C Language Example):
static void
foo_widget_init (FooWidget *self)
{
// ...
gtk_widget_init_template (GTK_WIDGET (self));
}
You can access widgets defined in the template using the
gtk_widget_get_template_child()
function, but you will typically declare
a pointer in the instance private data structure of your type using the same
name as the widget in the template definition, and call
gtk_widget_class_bind_template_child_private()
with that name, e.g.
(C Language Example):
typedef struct {
GtkWidget *hello_button;
GtkWidget *goodbye_button;
} FooWidgetPrivate;
G_DEFINE_TYPE_WITH_PRIVATE (FooWidget, foo_widget, GTK_TYPE_BOX)
static void
foo_widget_class_init (FooWidgetClass *klass)
{
// ...
gtk_widget_class_set_template_from_resource (GTK_WIDGET_CLASS (klass),
"/com/example/ui/foowidget.ui");
gtk_widget_class_bind_template_child_private (GTK_WIDGET_CLASS (klass),
FooWidget, hello_button);
gtk_widget_class_bind_template_child_private (GTK_WIDGET_CLASS (klass),
FooWidget, goodbye_button);
}
static void
foo_widget_init (FooWidget *widget)
{
}
You can also use gtk_widget_class_bind_template_callback()
to connect a signal
callback defined in the template with a function visible in the scope of the
class, e.g.
(C Language Example):
// the signal handler has the instance and user data swapped
// because of the swapped="yes" attribute in the template XML
static void
hello_button_clicked (FooWidget *self,
GtkButton *button)
{
g_print ("Hello, world!\n");
}
static void
foo_widget_class_init (FooWidgetClass *klass)
{
// ...
gtk_widget_class_set_template_from_resource (GTK_WIDGET_CLASS (klass),
"/com/example/ui/foowidget.ui");
gtk_widget_class_bind_template_callback (GTK_WIDGET_CLASS (klass), hello_button_clicked);
}
The Widget
type acts as a reference-counted owner of an underlying GtkWidget
instance.
It provides the methods that can operate on this data type through WidgetProtocol
conformance.
Use Widget
as a strong reference or owner of a GtkWidget
instance.
-
Designated initialiser from the underlying `C` data type.
This creates an instance without performing an unbalanced retain i.e., ownership is transferred to the
Widget
instance.Declaration
Swift
@inlinable public init(_ op: UnsafeMutablePointer<GtkWidget>)
Parameters
op
pointer to the underlying object
-
Designated initialiser from a constant pointer to the underlying
C
data type. This creates an instance without performing an unbalanced retain i.e., ownership is transferred to theWidget
instance.Declaration
Swift
@inlinable public init(_ op: UnsafePointer<GtkWidget>)
Parameters
op
pointer to the underlying object
-
Optional initialiser from a non-mutating
gpointer
to the underlyingC
data type. This creates an instance without performing an unbalanced retain i.e., ownership is transferred to theWidget
instance.Declaration
Swift
@inlinable override public init!(gpointer op: gpointer?)
Parameters
op
gpointer to the underlying object
-
Optional initialiser from a non-mutating
gconstpointer
to the underlyingC
data type. This creates an instance without performing an unbalanced retain i.e., ownership is transferred to theWidget
instance.Declaration
Swift
@inlinable override public init!(gconstpointer op: gconstpointer?)
Parameters
op
pointer to the underlying object
-
Optional initialiser from a constant pointer to the underlying
C
data type. This creates an instance without performing an unbalanced retain i.e., ownership is transferred to theWidget
instance.Declaration
Swift
@inlinable public init!(_ op: UnsafePointer<GtkWidget>?)
Parameters
op
pointer to the underlying object
-
Optional initialiser from the underlying
C
data type. This creates an instance without performing an unbalanced retain i.e., ownership is transferred to theWidget
instance.Declaration
Swift
@inlinable public init!(_ op: UnsafeMutablePointer<GtkWidget>?)
Parameters
op
pointer to the underlying object
-
Designated initialiser from the underlying
C
data type. Will retainGtkWidget
. i.e., ownership is transferred to theWidget
instance.Declaration
Swift
@inlinable public init(retaining op: UnsafeMutablePointer<GtkWidget>)
Parameters
op
pointer to the underlying object
-
Reference intialiser for a related type that implements
WidgetProtocol
Will retainGtkWidget
.Declaration
Swift
@inlinable public init<T>(widget other: T) where T : WidgetProtocol
Parameters
other
an instance of a related type that implements
WidgetProtocol
-
Unsafe typed initialiser. Do not use unless you know the underlying data type the pointer points to conforms to
WidgetProtocol
.Declaration
Swift
@inlinable override public init<T>(cPointer p: UnsafeMutablePointer<T>)
Parameters
cPointer
pointer to the underlying object
-
Unsafe typed, retaining initialiser. Do not use unless you know the underlying data type the pointer points to conforms to
WidgetProtocol
.Declaration
Swift
@inlinable override public init<T>(retainingCPointer cPointer: UnsafeMutablePointer<T>)
Parameters
cPointer
pointer to the underlying object
-
Unsafe untyped initialiser. Do not use unless you know the underlying data type the pointer points to conforms to
WidgetProtocol
.Declaration
Swift
@inlinable override public init(raw p: UnsafeRawPointer)
Parameters
p
raw pointer to the underlying object
-
Unsafe untyped, retaining initialiser. Do not use unless you know the underlying data type the pointer points to conforms to
WidgetProtocol
.Declaration
Swift
@inlinable override public init(retainingRaw raw: UnsafeRawPointer)
-
Unsafe untyped initialiser. Do not use unless you know the underlying data type the pointer points to conforms to
WidgetProtocol
.Declaration
Swift
@inlinable public required init(raw p: UnsafeMutableRawPointer)
Parameters
p
mutable raw pointer to the underlying object
-
Unsafe untyped, retaining initialiser. Do not use unless you know the underlying data type the pointer points to conforms to
WidgetProtocol
.Declaration
Swift
@inlinable required public init(retainingRaw raw: UnsafeMutableRawPointer)
Parameters
raw
mutable raw pointer to the underlying object
-
Unsafe untyped initialiser. Do not use unless you know the underlying data type the pointer points to conforms to
WidgetProtocol
.Declaration
Swift
@inlinable override public init(opaquePointer p: OpaquePointer)
Parameters
p
opaque pointer to the underlying object
-
Unsafe untyped, retaining initialiser. Do not use unless you know the underlying data type the pointer points to conforms to
WidgetProtocol
.Declaration
Swift
@inlinable override public init(retainingOpaquePointer p: OpaquePointer)
Parameters
p
opaque pointer to the underlying object